суббота, 22 декабря 2012 г.

Координатный метод решения задач С-2

В задании С2 по математике чаще всего надо решить задачу, в которой надо определить:
  1. Расстояние между двумя точками
  2. Расстояние от точки до прямой
  3. Расстояние от точки до плоскости
  4. Расстояние между скрещивающимися прямыми
  5. Угол между двумя прямыми
  6. Угол между прямой и плоскостью
  7. Угол между плоскостями

Задачи элементарные, если следовать алгоритму решения С2 и помнить про основные тригонометрические свойства, как например свойства диагоналей или площадь поверхности многогранника. Опорные задачи вам помогут вспомнить эти основные свойства.

Теперь перейдем непосредственно к алгоритмам.



1. Для определения расстояния между двумя точками А и В используем один из двух способов:
  • Включаем АВ в некоторый треугольник и находим его длину как сторону треугольника
  • По формуле 



При чем координатный метод на мой взгляд наиболее прост, надо только аккуратно определить координаты каждой точки.

2. Для определения расстояния от точки до прямой вычисляется
  • как длина отрезка перпендикуляра, если удастся включить этот отрезок в некоторый треугольник в качестве одной из высот
при помощи координатного метода используя формулы вычисления площади, в которых искомым расстоянием будет высота и

3. Расстояние от точки до плоскости равно
  • длине перпендикуляра, опущенного из этой точки на плоскость. Для этого аккуратно строим сечение, которое перпендикулярно плоскости и проходит через заданную точку. Искомое расстояние будет равно высоте полученного нового многогранника.
  • С использованием координатного метода



Уравнение находится путем подстановки координат трех точек, принадлежащих этой плоскости
  • С использованием векторного метода
Для этого надо вспомнить правила сложения и вычитания векторов, что произведение перпендикулярных векторов равно нулю.
  • Методом объемов, если имеется пирамида АВСМ, то расстояние от точки М до плоскости, содержащей треугольник АВС вычисляется по формуле


  • Методом опорных задач, которые можно посмотреть здесь

4. Расстояние между скрещивающимися прямыми можно решить с помощью

4.1. Поэтапно-вычислительного метода:
  • построить общий перпендикуляр двух скрещивающихся прямых и найти его длину;
  • построить плоскость, содержащую одну из прямых и параллельную второй. Тогда искомое расстояние будет равно расстоянию от точки до прямой, построенной в плоскости;
  • заключить данные прямые в параллельные плоскости, проходящие через данные скрещивающиеся прямые, найти расстояние между этими плоскостями
  • построить плоскость, перпендикулярную одной из этих прямых и построить ортогональную проекцию второй прямой



4.2. Векторно-координатного метода
  • Находим координаты концов отрезка, являющегося общим перпендикуляром двух скрещивающихся прямых
  • Находим расстояние между двумя точками

4.3. Векторного метода
Задачу сводим к определению длины вектора, принадлежащего перпендикуляру являющемуся общим перпендикуляром двух скрещивающихся прямых

4.4. Метода опорных задач

5.Угол между двумя прямыми определяется несколькими способами

5.1 Поэтапно-вычислительным методом

, при этом надо достроить до треугольника, в котором одна из сторон является той, расстояние от которой находится (с), а вторая сторона (в) параллельна скрещивающейся прямой

5.2. Векторно-координатный метод

Используют формулу или где векторы p и q параллельны заданным прямым, определены их координаты

5.3. Метод опорных задач

6. Угол между прямой и плоскостью определяется путем включения его в прямоугольный треугольник в качестве одного из острых углов, либо векторно-координаторным методом

или

Либо методом опорных задач

Как определяется угол между плоскостями рассмотрим в следующем уроке. Данные алгоритмы решения С2 способствуют комплексному пониманию метода решения поставленной задачи. Источник " В помощь школьнику журнал для школьников и их родителей". Read more: http://education-club.ru/#ixzz2IXf5GOJU


7. Угол между плоскостями(геометрический метод)
  • 1. Найти прямую, по которой пересекаются плоскости. 
  • 2. Выбрать на этой прямой точку и провести к ней два перпендикуляра, лежащих в этих плоскостях. Или провести плоскость, перпендикулярную линии пересечения плоскостей. 
  • 3. Найти тригонометрическую функцию угла, образованного перпендикулярами к линии пересечения плоскостей. Как правило, мы делаем это через треугольник, в который входит искомый угол. 
  • 4. В ответе записать значение угла, или тригонометрической функции угла.


Угол между плоскостями. Метод координат. Задание С2

Две пересекающиеся плоскости образуют две пары равных между собой двугранных углов:

Величина двугранного угла измеряется величиной соответствующего линейного угла.

Чтобы построить линейный угол двугранного угла, нужно взять на линии пересечения плоскостей произвольную точку, и в каждой плоскости провести к этой точке луч перпендикулярно линии пересечения плоскостей. Угол, образованный этими лучами и есть линейный угол двугранного угла:

Величиной угла между плоскостями называется величина меньшегодвугранного угла.

Пусть наши плоскости и заданы уравнениями:

:

:

Косинус угла между плоскостями находится по такой формуле:



В ответе мы записываем , так как величиной угла между плоскостями называется величина меньшего двугранного угла.

Решим задачу, которая была предложена на пробнике для подготовке к ЕГЭ 17 марта 2012 года.

В правильной четырехугольной призме со стороной основания 12 и высотой 21 на ребре взята точка М так, что . На ребре взята точка K так, что . Найдите угол между плоскостью и плоскостью .

Сделаем чертеж. Так как мы будем использовать метод координат, сразу введем систему координат:

Теперь перед нами стоит задача написать уравнения плоскости и плоскости .

Подробный алгоритм нахождения уравнения плоскости по трем точкам я описывала здесь.

После того, как мы найдем коэффициенты в уравнениях плоскости и плоскости , подставим их в формулу для нахождения косинуса угла между плоскостями, и найдем угол.

Предлагаю вам посмотреть подробное видеорешение этой задачи:



Еще одна задача от Инны Владимировны Фельдман


  Видео уроки "Координатный метод решения задач с-2"



урок 2 http://youtu.be/dKQWG8OZRGo
урок 3 http://youtu.be/ddgr0PnbFno
урок 4 http://youtu.be/n6yx2pQC0Lo
урок 5 http://youtu.be/JkWbxAw1YLI
урок 6 http://youtu.be/gybIqCMKBiI
урок 7 http://youtu.be/_LpARpYxp5g
урок 8 http://youtu.be/XJhyZQoofD8

Практикум по решению задач с2 сайт Лузгина Владимира Николаевича видео лекции


2 комментария: